Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139129

RESUMO

The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction. For this purpose, a biochemical analysis of the relevant serum biomarkers and ECG monitoring were performed in combination with transmission electron microscopy and a comprehensive study of cardiac mitochondrial functions. The administration of ISO (150 mg/kg, twice with an interval of 24 h, s.c.) to rats caused myocardial degenerative changes, a sharp increase in the serum cardiospecific markers troponin I and the AST/ALT ratio, and a decline in the ATP level in the left ventricular myocardium. In parallel, alterations in the organization of sarcomeres with focal disorganization of myofibrils, and ultrastructural and morphological defects in mitochondria, including disturbances in the orientation and packing density of crista membranes, were detected. These malfunctions were improved by pretreatment with uridine (30 mg/kg, twice with an interval of 24 h, i.p.). Uridine also led to the normalization of the QT interval. Moreover, uridine effectively inhibited ISO-induced ROS overproduction and lipid peroxidation in rat heart mitochondria. The administration of uridine partially recovered the protein level of the respiratory chain complex V, along with the rates of ATP synthesis and mitochondrial potassium transport, suggesting the activation of the potassium cycle through the mitoKATP channel. Taken together, these results indicate that uridine ameliorates acute ISO-induced myocardial injury and mitochondrial malfunction, which may be due to the activation of mitochondrial potassium recycling and a mild uncoupling leading to decreased ROS generation and oxidative damage.


Assuntos
Cardiomiopatias , Mitocôndrias Cardíacas , Ratos , Animais , Isoproterenol/efeitos adversos , Mitocôndrias Cardíacas/metabolismo , Uridina/farmacologia , Uridina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiomiopatias/metabolismo , Potássio/metabolismo , Trifosfato de Adenosina/metabolismo
2.
J Bioenerg Biomembr ; 51(5): 329-340, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31342235

RESUMO

The mitochondrial structure and the contents of subunits (NDUFV2, SDHA, Cyt b, COX1) of mitochondrial respiratory complexes I-IV as well as of the hypoxia-inducible factor (HIF-1α) in the brain cortex (BC) of rats with high resistance (HR) and low resistance (LR) to hypoxia were studied for the first time depending on the severity of hypoxia. Different regimes of 30-min hypobaric hypoxia (pO2 14, 10, and 8%) were used. It was found that cortical mitochondria responded to 30-min hypobaric hypoxia of different severity with typical and progressing changes in mitochondrial structure and function of mitochondrial enzymes. Under 14 and 10% hypoxia, animals developed compensatory structural and metabolic responses aimed at supporting the cell energy homeostasis. Consequently, these hypoxia regimes can be used for treatment in pressure chambers. At the same time, decreasing the oxygen concentration in the inhaled air to 8% led to the appearance of destructive processes in brain mitochondria. The features of mitochondrial ultrastructure and the function of respiratory enzymes in the BC of HR and LR rats exposed to normoxic and hypoxic conditions suggest that the two types of animals had two essentially distinct functional and metabolic patterns determined by different efficiency of the energy apparatus. The development of adaptive and destructive responses involved different metabolic pathways of the oxidation of energy substrates and different efficiency of the functioning of mitochondrial respiratory carriers.


Assuntos
Adaptação Fisiológica , Córtex Cerebral/metabolismo , Hipóxia , Mitocôndrias/enzimologia , Animais , Respiração Celular , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Metabolismo Energético , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Oxigênio/metabolismo , Ratos
3.
J Bioenerg Biomembr ; 50(4): 289-295, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29721776

RESUMO

In the present work, ultrastructural changes of rat liver mitochondria in hyperthyroidism were studied. Hyperthyroidism was induced in male Wistar rats by daily administration of 100 µg thyroxin per 100 g body weight for 5 days. The level of triiodothyronine and thyroxine increased 3- and 4-fold, respectively, in comparison with the same parameters in the control group, indicating the development of hyperthyroidism in experimental animals. It was found that under this experimental pathology 58% of the mitochondria are swollen, with their matrix enlightened, as compared to the control. In 40% of the profiles, the swollen mitochondria in the liver under hyperthyroidism exhibited rounded mono- or multilayer membrane structures, called lamellar bodies (LBs), presumably at different stages of their development: from the formation to the release from the organelles. Most LBs were located in the mitochondria near the nuclear zone (27%), while their number was reduced in the part of the cell adjacent to the plasma membrane. In a number of swollen mitochondria the cristae were shown to change their orientation, being directed radially toward the center of the mitochondria. We suggested that it is the first stage of formation of LBs. The second stage can be attributed to the formation of monomembrane structures in the center of the organelles. The third stage is characterized by the fact that the membrane of the lamellar bodies consists of several layers, and in this case the bodies were located closer to the outer mitochondrial membrane. The evagination of the outer mitochondrial membrane and its connection with lamellar structure can be recognized as the fourth stage of formation of LBs. At the fifth stage the developed lamellar formations exited the mitochondria. At the same time, following the exit of LBs from the mitochondria, no damage to the mitochondrial membrane was registered, and the structure of the remaining part of the mitochondria was similar to the control. The nucleus of the hepatocyte also underwent structural changes in hyperthyroidism, exhibiting changes in the membrane configuration, and chromatin condensation. The nature and structure of the LBs, as well as their functional role in the liver mitochondria in hyperthyroidism, require further investigation.


Assuntos
Hipertireoidismo/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Animais , Núcleo Celular/ultraestrutura , Hepatócitos/ultraestrutura , Hipertireoidismo/induzido quimicamente , Dilatação Mitocondrial , Ratos , Ratos Wistar , Tiroxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...